APPLICATIONS LINÉAIRES

Pr. M. ABID

Mathématiques pour S. E. G

1

APPLICATIONS LINEAIRES <u>Définition</u>

• <u>I - Définition</u>

E et F deux espaces vectoriels réels

$$\begin{aligned} f : E &\to F \\ u &\to f(u) \end{aligned}$$

fest linéaire si et seulement si on a :

$$\underline{f(u+v) = f(u) + f(v)} \qquad \forall \ u \in \mathbf{E} \ \text{et} \ \forall \ v \in \mathbf{E}$$

$$\underline{f(\lambda \cdot u) = \lambda \cdot f(u)} \qquad \forall \ u \in \mathbf{E} \ \text{et} \ \forall \ \underline{\lambda \in \mathcal{R}}$$

Pr. M. ABID

Mathématiques pour S. E. G

APPLICATIONS LINEAIRES <u>Exemples</u>

• Exemples

-
$$E = \mathcal{R}, F = \mathcal{R}$$

f: $\mathcal{R} \to \mathcal{R}$
 $x \to f(x) = a x$

-
$$E = \mathcal{R}^2$$
, $F = \mathcal{R}$
f: $\mathcal{R}^2 \to \mathcal{R}$
 $(x,y) \to f(x,y) = a x + b y$

Pr. M. ABID

Mathématiques pour S. E. G

3

APPLICATIONS LINEAIRES <u>Exemples</u>

$$-E = \mathcal{R}^2, F = \mathcal{R}^2$$

$$f: \mathcal{R}^2 \to \mathcal{R}^2$$

$$(x,y) \to f(x,y) = (2 x + 3 y, x - y)$$

-
$$E = \mathcal{R}^3$$
, $F = \mathcal{R}^2$
f: $\mathcal{R}^3 \to \mathcal{R}^2$
(x,y,z) \to f(x,y,z) = (x + y + z, y)

Pr. M. ABID

Mathématiques pour S. E. G

APPLICATIONS LINEAIRES <u>Propriétés</u>

• Propriété caractéristique

$$\begin{split} f: E &\rightarrow \text{F est lin\'eaire si et seulement si}: \\ \forall \ \lambda \in \Re, \ \forall \ \mu \in \Re, \ \forall \ u \in E \ \text{et} \ \forall \ v \in E \\ f(\lambda . \ u \ + \ \mu . \ v) = \lambda . \ f(u) \ + \mu . \ f(v) \end{split}$$

Propriété

Si f : E
$$\rightarrow$$
 F est linéaire alors f(0_E) = 0_F

La réciproque n'est pas vraie

Pr. M. ABID

Mathématiques pour S. E. G

5

APPLICATIONS LINEAIRES <u>Propriétés</u>

• Exemple

L'application définie par :

f:
$$(x, y, z) \rightarrow (x + y, y + 1, z)$$

est-elle linéaire ?

f (0, 0, 0) = (0, 1, 0)
$$\neq$$
 (0, 0, 0) = 0_{\Re}^3 f n'est pas linéaire

En posant
$$X = (x, y, z)$$
, $Y = (x', y', z')$ et $Z = (x'', y'', z'')$
On montre que
 $f(\alpha X + \beta Y + \gamma Z) \neq \alpha f(X) + \beta f(Y) + \gamma f(Z)$

Pr. M. ABID

Mathématiques pour S. E. G

APPLICATIONS LINEAIRES <u>Propriétés</u>

• Caractérisation d'une application linéaire

Théorème:

Soient { $e_1,...,e_n$ } une base d'un e.v.r. E et { $v_1,...,v_n$ } n vecteurs d'un e.v.r. F.

Alors, il existe une application linéaire unique

f: **E** → **F** vérifiant :

$$f(e_i) = v_i$$
 pour i =1,...,n

f est **entièrement déterminée** par les images des éléments de la base de **E**.

Pr. M. ABID

Mathématiques pour S. E. G

7

APPLICATIONS LINEAIRES <u>Propriétés</u>

• <u>Démonstration</u>:

Soit $u \in E$, alors u s'écrit d'une façon unique :

$$\mathbf{u} = \sum_{i=1}^{n} \lambda_{i} \mathbf{e}_{i}$$

Soit f une application linéaire de E dans F :

$$f(u) = f(\lambda_1 e_1 + ... + \lambda_n e_n) = \lambda_1 f(e_1) + ... + \lambda_n f(e_n)$$

$$f(u) = \lambda_1 v_1 + ... + \lambda_n v_n$$

Si l'on prend comme définition de f :

$$f(u) = \lambda_1 v_1 + ... + \lambda_n v_n$$
, pour $u = \sum_{i=1}^{n} \lambda_i e_i$

f est linéaire et vérifie :

$$f(e_i) = v_i \text{ pour } i = 1,...,n$$

Pr. M. ABID

Mathématiques pour S. E. G

APPLICATIONS LINEAIRES Propriétés

• Exemple

Déterminer l'application linéaire $f: \mathcal{R}^2 \to \mathcal{R}$ vérifiant :

$$f(1,0) = 3$$
 et $f(0,1) = 2$

Comme les vecteurs $e_1 = (1,0)$ et $e_2 = (0,1)$ forment une base de \mathcal{R}^2 , le théorème précédent montre qu'une telle application existe et est unique.

Pour $(x,y) \in \mathcal{R}^2$, on a:

$$(x,y) = x.(1,0) + y.(0,1)$$

$$f(x,y) = x.f(1,0) + y.f(0,1) = 3 x + 2 y$$

Pr. M. ABID

Mathématiques pour S. E. G

9

APPLICATIONS LINEAIRES <u>Composition des applications linéaires</u>

• Composition des applications linéaires

Soient $\mathbf{f}: \mathbf{E} \to \mathbf{F}$, $\mathbf{g}: \mathbf{F} \to \mathbf{G}$ deux applications linéaires alors $\mathbf{h} = \mathbf{g} \circ \mathbf{f}: \mathbf{E} \to \mathbf{G}$ est une application linéaire.

démonstration:

$$h(\lambda . u + \mu . v) = g(f(\lambda . u + \mu . v))$$

$$h(\lambda \cdot u + \mu \cdot v) = g(\lambda f(u) + \mu f(v))$$

$$h(\lambda . u + \mu . v) = \lambda gof(u) + \mu gof(v)$$

$$\forall \lambda, \mu \in \mathcal{R} \text{ et } \forall u, v \in E.$$

Pr. M. ABID

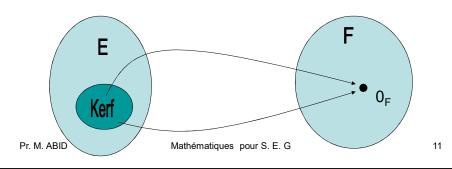
Mathématiques pour S. E. G

APPLICATIONS LINEAIRES <u>Noyau</u>

Noyau d'une application linéaire

Définition : soit *f* : *E* → *F* une application linéaire. <u>Le noyau</u> de **f**, noté **Kerf**, est défini par :

$$Kerf = \{u \in E / f(u) = 0_F\}$$



APPLICATIONS LINEAIRES <u>Noyau</u>

Propriété

Si $f: E \rightarrow F$ est une application linéaire, alors Kerf est un $\underline{s.e.v.}$ de E.

<u>Démonstration</u>

Kerf n'est pas vide car $0_E \in Kerf$.

Soit ${\bf u}$ et ${\bf v}$ deux vecteurs quelconques de ${\bf Kerf}$ et λ , μ deux réels quelconques.

 $f(\lambda u + \mu v) = \lambda f(u) + \mu f(v)$ (f est linéaire)

 $f(\lambda u + \mu v) = \lambda 0_F + \mu 0_F (u \text{ et } v \text{ sont dans } Kerf)$

 $f(\lambda u + \mu v) = 0_F$

Par conséquent, $\lambda u + \mu v$ est dans **Kerf**.

Kerf est donc un s.e.v. de E.

Pr. M. ABID Mathématiques pour S. E. G

APPLICATIONS LINEAIRES Noyau

• Exemple

```
Soit f: \mathcal{R}^2 \to \mathcal{R}^2 définie par : f(x,y) = (x+y,x+y) (f est linéaire, le vérifier) déterminer \ Kerf Kerf = \{(x,y) \in \mathcal{R}^2 / f(x,y) = 0_R^2\} Kerf = \{(x,y) \in \mathcal{R}^2 / f(x,y) = (0,0)\} Kerf = \{(x,y) \in \mathcal{R}^2 / x + y = 0\} Kerf = \{(x,y) \in \mathcal{R}^2 / y = -x\} Kerf = \{(x,-x) \in \mathcal{R}^2 / x \in \mathcal{R}\} Kerf = \{x.(1,-1), x \in \mathcal{R}\} Kerf = \{(1,-1) > 0\}
```

Pr. M. ABID

Mathématiques pour S. E. G

13

APPLICATIONS LINEAIRES <u>Noyau</u>

Exemple

```
Soit f: \mathcal{R}^4 \to \mathcal{R}^2 définie par : f(x, y, z, t) = (x-y+2t, x+y+z+3t) déterminer Kerf

On pose X = (x, y, z, t); X \in Kerf \Rightarrow f(X) = O_{\mathcal{R}}^2

Donc y = x + 2t et z = -2x - 5t

X = (x, y, z, t) = (x, x + 2t, -2x - 5t, t)

X = x (1, 1, -2, 0) + t (0, 2, -5, 1)

X = x U + t V avec U = (1, 1, -2, 0) et V = (0, 2, -5, 1)

\{U, V\} est une famille libre génératrice donc c'est une base de Kerf donc Kerf = \langle U, V \rangle
```

Pr. M. ABID

Mathématiques pour S. E. G

APPLICATIONS LINEAIRES <u>Noyau</u>

• Caractérisation des injections linéaires

Soit $f: E \to F$ une application linéaire. f est injective si et seulement :

$$Kerf = \{0_F\}$$

Démonstration:

Supposons f <u>injective</u>. Soit $u \in Kerf$, alors $f(u) = 0_F$. Mais f est injective, d'où $u = 0_E$ Donc $Kerf = \{0_E\}$.

Pr. M. ABID

Mathématiques pour S. E. G

15

APPLICATIONS LINEAIRES <u>Noyau</u>

```
Réciproquement,
```

supposons $Kerf = \{0_F\}$.

Si f(u) = f(v) alors $f(u) - f(v) = 0_F$.

Comme f est linéaire, $f(u) - f(v) = f(u - v) = 0_F$.

Par conséquent,

 $u - v \in Kerf.$

Mais $Kerf = \{0_E\}$, donc $u - v = 0_E$ et par conséquent

u = v.

f est donc injective.

Pr. M. ABID

Mathématiques pour S. E. G

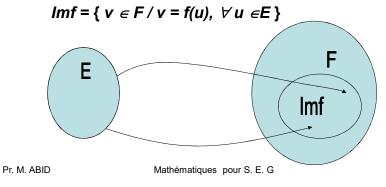
APPLICATIONS LINEAIRES *Image*

· Image d'une application linéaire

Définition:

soit $f: E \rightarrow F$ une application linéaire.

L'image de f, notée Imf, est l'ensemble f(E) :



APPLICATIONS LINEAIRES <u>Image</u>

Propriété

Si $f: E \rightarrow F$ est une application linéaire, alors Imf est un <u>s.e.v.</u> de **F**.

Démonstration

Imf n'est pas vide car $0_F \in Imf$.

Soit v_1 et v_2 deux vecteurs quelconques de Imf et $\lambda_{1/2}$ λ_2 deux réels quelconques.

Alors il existe deux vecteurs u_1 et u_2 de E tel que l'on ait:

$$v_1 = f(u_1)$$
 et $v_2 = f(u_2)$.

Il s'ensuit que

$$\begin{array}{c} \lambda_1. \ \mathbf{V_1} + \lambda_2. \ \mathbf{V_2} = \lambda_1. \ \mathbf{f(u_1)} + \lambda_2. \ \mathbf{f(u_2)} = \mathbf{f(\lambda_1. \ u_1 + \lambda_2. \ u_2)} \\ \text{Donc} \ (\lambda_1. \ \mathbf{V_1} + \lambda_2. \ \mathbf{V_2}) \in \mathbf{Imf} \\ \text{Pr. M. ABID} \end{array}$$

Pr. M. ABID

18

APPLICATIONS LINEAIRES *Image*

Caractérisation des surjections linéaires

Soit $f: E \rightarrow F$ une application linéaire. Alors f est surjective si et seulement :

<u>Imf = F</u>

démonstration:

On a toujours : $Imf \subset F$. f est $\underline{surjective}$ si et seulement si : $\forall v \in F, \exists u \in E$ tel que f(u) = v. Donc, $v \in Imf$ et $F \subset Imf$.

Pr. M. ABID

Mathématiques pour S. E. G

19

APPLICATIONS LINEAIRES <u>Image</u>

• Caractérisation des bijections linéaires

Soit $f: E \rightarrow F$ une application linéaire. Alors f est <u>bijective</u> si et seulement :

 $Kerf = \{0_F\}$ et Imf = F

Théorème

Soit $f: E \rightarrow F$ une application linéaire bijective. Alors f^1 est <u>une application linéaire</u> de F dans E.

Pr. M. ABID

Mathématiques pour S. E. G

APPLICATIONS LINEAIRES *Image*

Exemple

Soit
$$f: \mathcal{H}^2 \to \mathcal{H}^2$$
 définie par : $f(x,y) = (x+y,x+y)$.
 $Imf = ? Kerf = ?$
 $Imf = \{f(x,y) / (x,y) \in \mathcal{H}^2\}$
 $Imf = \{(x+y,x+y) / (x,y) \in \mathcal{H}^2\}$
 $Imf = \{(x+y).(1,1) / (x,y) \in \mathcal{H}^2\}$
 $Imf = \{\lambda.(1,1) / \lambda \in \mathcal{H}\}$
 $Imf = \langle (1,1) \rangle$

Pr. M. ABID

Mathématiques pour S. E. G

21

APPLICATIONS LINEAIRES Rang

· Rang d'une application linéaire

Définition:

le rang d'une application linéaire $f: E \rightarrow F$ est la dimension de l<u>'espace vectoriel</u> **Imf**.

rg(f) = dim(Imf)

Remarque:

Étant donné une base $\{e_1,...,e_n\}$ de E, le rang de f est égal au nombre maximum de vecteurs linéairement indépendants de $\{f(e_1),...,f(e_n)\}$.

Pr. M. ABID

Mathématiques pour S. E. G

APPLICATIONS LINEAIRES Rang

Théorème noyau / image :

Soit $\textbf{\textit{E}}$ et $\textbf{\textit{F}}$ deux <u>espaces</u> <u>vectoriels</u> de dimension finie et $f: E \to F$ une application linéaire. Alors on a :

dimE = dim(Kerf) + dim(Imf)

Pr. M. ABID Mathématiques pour S. E. G

APPLICATIONS LINEAIRES <u>Rang</u>

Conséquences pratiques

Soient **E** et **F** deux espaces vectoriels de dimension finie et

 $f: E \rightarrow F$ une application linéaire.

- f est <u>injective</u> si et seulement si <u>rg(f)</u> = dimE.
- f est <u>surjective</u> si et seulement si rg(f) = dimF.
- f est <u>bijective</u> si et seulement si <u>rg(f) = dimE = dimF.</u>

Pr. M. ABID

Mathématiques pour S. E. G

24

APPLICATIONS LINEAIRES *Rang*

• Exemple

Soit
$$\underline{f:R^2 \to R^2}$$
 définie par :
 $f(x,y) = (x+y,x+y)$
 $Imf = \langle (1,1) \rangle \to dim(Imf) = 1 = rg(f)$
 $Kerf = \langle (1,-1) \rangle \to dim(Kerf) = 1$
 $dim(R^2) = 1 + 1 = 2$

Pr. M. ABID

Mathématiques pour S. E. G